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Crossover behavior in a mixed-mode fiber bundle model
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We introduce a mixed-mode load sharing scheme in a fiber bundle model. This model reduces exactly to
equal-load-sharindELS) and local-load-sharingLLS) models at the two extreme limits of a single-load-
sharing parameter. We identify two distinct regim@s:the mean-field regime where the ELS mode dominates
and (b) the short-range regime dominated by the LLS mode. The crossover behavior is explored through a
numerical study of the strength variation, the avalanche statistics, susceptibility and relaxation time variations,
the correlations among the broken fibers, and their cluster analysis. Analyzing the moments of the cluster size
distributions we locate the crossover point of these regimes. We thus conclude that even in one dimension, the
fiber bundle model shows crossover behavior from mean-field to short-range interactions.
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I. INTRODUCTION been solved analyticallj15,16 and the universality of the

The fiber bundle model represents a simple, stochastitlgl'S model has been establist{dd] recently. However, the

fracture-failure procesfdl] in materials subjected to external §trg ‘.‘gth of LLS m odels goes to zef21-23 a}t the “m'f[ of
load. The model consists of three basic ingrediefus:a mﬂmte 'system size and this does not permit any critical be-
discrete set oN elements located at sites of a lattice) a ~ navior in the failure process. _
probability distribution of the strength threshold of indi- 1h€ ELS and LLS models belong to two opposite ex-
vidual elements(fibers, and (c) a load-transfer rule which tr_eme_s with respect to the spatial cprrelatlons in stress redis-
distributes the terminal load carried by the failed fibers to théfibutions. These models do not incorporate any type of
surviving fibers. The model study was initiated by Pefi2ze ~ Stress gradient among the intact fibers which is an usual ex-
in the context of testing the strength of cotton yarns. Sincdectation. Therefore a load sharing scheme in between ELS
then, this model has been studied and modified by mangnd LLS should be a realistic approach to study the failure of
groups[3-25 using analytic as well as numerical methods. heterogeneous materials. Hansen and Hem[@4} intro-
Fiber bundles are of two classes with respect to the timeluced a A model” to interpolate between ELS and LLS
dependence of the fiber strength threshold: “Static” bundlesnodels where\ is an adjustable stress-transfer factor. Al-
contain fibers whose threshold strengths are independent tdfough they conjectured the existence of a critical crossover
time and such bundles are subjected to quasistatic loadingalue A\, which separates the mean-figleLS) regime and

i.e., the load is increased steadily up to the complete failurghe short-rangéLS) regime, what would be the exact cross-
of the bundles. The load or stress(load per fibey is an  over point was not answered. A recent approach by Hidalgo
independent variable here, and the strength of the bundle is al. [25] incorporates both the ELS and LLS modes intro-
determined by the maximum value of the applied load Orducing an effective range of interaction paramétgrwhich
stress(a,) that can be supported by the bundle. On the othefg 4cqyally the power of the stress redistribution function.

hand, “dynamic” bundles consist of fibers having time-they ohserved crossover behavior in the strength variation
dependent strength and the fibers fail due to fatigte7l  ;4'in the avalanche statistics of the failures. Also they de-

after a period of time Wh'.Ch varies f|bgr to fiber. The UMe o rmined the crossover poilit,) through moment analysis
taken for complete failure is called the lifetime of the bundle. . o .
f the cluster size distributions before total failure.

According to the load sharing rule, fiber bundles are bein In this paper we develop a mixed-mode load sharing

classified into two groups: equal-load-shariid S) bundles L
[8-17 or democra?ic bﬂndleqs and Iocal-loz;Eg-_shar[mgS) (MMLS) model which interpolates the ELS and LLS models

bundles[18—20. In the ELS models all the intact fibers COTrectly. We intend to study whether this model shows a
equally share the terminal load of a failed fiber, whereas irfontinuous transition from mean-fie(€LS) behavior to ex-
LLS model the terminal load gets shared among the intacifeme statistic§LLS) or if there exists a definite crossover
nearest neighbors. ELS models show a phase transition froRPInt. _ _ o _
partial failure to total failure at a critical strength). The We organize this paper as follows: After this introduction

critical behavior in the failure dynamics of ELS bundles has(Sec. ) we present our MMLS model in Sec. Il. Section IlI
contains observations of crossover behavior through a nu-

merical study of the model. The analysis to determine the
exact crossover point is given in Sec. IV. The final section
(Sec. V) is devoted to a discussions including our conclu-
sions.
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FIG. 1. The strength of the bundle for different system sidés IA(In(N))
as a function of the weight parameigr . o
FIG. 2. The logarithmic size dependence of bundle’s strength
for different values ofy. The straight lines represent the best fit.
1l. MODEL
Our mixed-mode load sharing scheme is basically a cou- B. Avalanche size distribution

pling of ELS and LLS modes: When a fiber fails, a fraction - tpg ayalanche size distribution characterizes the fracture
(g) of its terminal load gets shared among the nearest neighsocess by reflecting the precursory activities toward com-
bors of the failed fibefLLS rule) and the restl—g fraction  pete failure. This can be related to the acoustic emissions
is distributed equally among all the surviving fibeiSLS  gpserved in material failuré26—28. Hemmer and Hansen
rule). Hereg is the weight parameter of the MMLS scheme. ghqwed[8] analytically that for ELS models the avalanche
Therefore, the model reduces exactly to the ELS model fogjze gistribution follows a universal power law with expo-
g=0, and forg=1, it becomes a pure LLS one. As we have nent value -5/2. But for LLS models the numerically esti-
chosen &1-D)-fiber-bundle modefwith periodic boundary  mated apparent exponent value is quite largef@}S_ater it
condition, the number of nearest neighbors is always 2. Weyas shown analyticallyfor flat threshold distributionsthat
study the behavior of the model for the entire ranged  for the LLS model, no universal power-law asymptotics ex-
=<1 using Monte Carlo simulations for stepwise equal-loadists[lo]_

incrementg15-17 until total failure of the bundle. During Here we have measuréBig. 3 the avalanche size distri-

the entire study we consider a unifolfon averagdistribu-  pytions for differentg values. Clearly, two groups of curves
tion of the fiber strength threshold in the bundle.

Ill. CROSSOVER BEHAVIOR 008 o

10° | g=0.4 ---%---

A. Strength of the bundle g=0.6 —8—

g=0.7 —-#—

It has been known since DanigR3] that the ELS bundles g:g;g s
have a nonzero strengtlor,) above which the bundle fails g=1.0 —-a--

completely. Recently it has been shown analyticfll$,16| 102
that for a uniform fiber threshold distribution, the bundle’s
strength approaches the value 1/4 as the system size goes &
infinity. On the other hand, LLS bundles do not have any &
nonzero strengtfi21-23. In our MMLS model we intend to
study the strength variation of bundles with system size as 10
well as with the weight parameter

As g increases, the bundle becomes weaker due to the
short-ranggLLS) interactions. Therefore, decreases with
increasingg values(Fig. 1). We can see that, seems to be 10
independent of the system sizdominance of ELBup to 10 100 1000
g=0.7, and beyon@=0.8, a strong system size dependence
(dominance of LL$ appears. This observation is supported  FiG. 3. Avalanche size distribution for different values of the
by Fig. 2, where we have shown the logarithmic size depengeight parameteg (averaging over 5000 configurations for system
dence ofo. Up tog=0.7, the curves eventually become flat size N=20 000. The dotted line represents the mean-field result
as the system size increases. But ¢or 0.8, all the curves having exponent value —5/2. Clearly, the upper group of curves can
fall (following an inclined straight line Thus the two re- be fitted by the mean-field power law whereas the lower group does
gimes are differentiated clearly. not show power law at all.
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FIG. 4. The susceptibility x)
and relaxation time 7) variations
for differentg values. The bundle
contains 10 000 fibers and the data
are averaged over 10000
configurations.
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appear. The upper groyp<g=<0.7) can be fitted with the
mean-field resul{-5/2) where as the lower grouf.8<g
<1.0) shows a clear deviation from the power law.

C. Susceptibility and relaxation time variations

Recently, the dynamic response parameters, susceptibiliﬁ

(x) [13-16,29, and relaxation timer) [15,16 have been

g=02

g

0.7

time

position

g=0.8

FIG. 5. The space-time diagram of the breakdown sequence ir  10°

the MMLS model. The positions of the fibers are marked onxthe
axis, and the axis is a “time” axis where time indicates the number
of stress redistributions starting from initial loading. The white

studied in fiber bundle models. The susceptibility is defined
as the number of fibers fail due to an infinitesimal change of
the external stres§r) on the bundle and the relaxation time
is the time(number of stress redistributionthe bundle takes

to come to a stable fixed point at an external stfe9s For

he ELS model, the susceptibility and relaxation time seem
% follow a power law with the applied stress and both of
them diverge[13,15-17 at the critical strengthr,: x~ (o¢
-0)Y2 and 7~ (0.—0)"Y2. However, one cannot expect
such scaling behavior in LLS models due to the absence of
“critical” strength. The stepwise equal-load increment
method[15,16 enables us to measujeand 7 for different
values ofg (Fig. 4. The power-law behaviofwith mean-
field exponent —1/Rremains unchanged up ¢p=0.7 and for
g=0.8 the curves do not follow power laws at all. Thus the
susceptibility and relaxation time variations also suggest a
transition from the mean-field to short-range behavior to
happen in betweeg=0.7 andg=0.8.

D. Correlations among the broken fibers

The breakdown sequence reflects the correlations of the
breaking procesg24]. While the ELS model simply ignores

FIG. 6. Cluster size distributions of broken fibejast before

color represents intact fibers while the black regions stand for theomplete failurg¢ for different g values (averaging over 5000

broken fibers.

samples foiN=20 000.
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FIG. 7. The moments of the cluster size distributions as a function of the weight paragn@teeraging over 5000 samples fir
=20 000.

the spatial arrangement of the fibers, the LLS model give$12,25. The size distributions of the clustens(s) vs s| are
much importance to it. Therefore, gincrease4LLS mode  shown(Fig. 6) for different values ofy. Although the distri-
dominate$ the breaking process becomes more and mor®utions appear as two groups, it is not possible to identify the
correlated(Fig. 5. Here also we can identify two distinct exact crossover point from this. Therefore we go for the
regimes. We cannot see any spatial correlation among th@oment analysis: theth moment of the cluster distributions
broken fibergexcept near total failujeup tog=0.7, whereas is defined[25] as
for g=0.8 strong correlationgblack patch develop long

before total failure.

m, = f gn(e)ds. (D)

IV. DETERMINATION OF THE EXACT CROSSOVER

POINT THROUGH CLUSTER MOMENT ANALYSIS Clearly the zeroth momer(im,) gives the total number

clusters and the first moment gives the total number of bro-
The fracture process can also be characterized by analyken fibers. We can get the average cluster size dividing the
ing the clusters of broken fibers just before complete failuresecond momenm,) by first moment(m;).
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082 bution mechanism. Here a “crack” opens up when an ele-
ment (fiber) fails after external loading. This single-fiber
failure should affect the neighbors much than the distant el-
08 ements(like in electric fuse model$1]). Therefore a high
stress concentratio(after the load redistributionaround a
. crack(failed fibep is a natural expectation. The ELS models
do not incorporate any spatial correlations and exhibit per-
{ fect democracymean field, whereas the LLS models con-

0.78 |

fine themselves within the nearest-neighbor interactions. In
this situation attemptj24,25 to study the failure behavior in
between ELS and LLS regimes would be most welcome.
Also, a recent experiment on loaded wood fih86] de-
0741 mands an intermediate-load-sharing scheme to explain the
} observed strength variation. Tha model” [24] becomes a

0.76 I

cross-over point

LLS model at\=1. But it cannot be reduced to a pure ELS
model at\A=0, as the neighbors of the just broken fibers
become “immunized” against failure. Although the
o , , , , , , “variable-range-of-interaction” mode25] determines the
T o 0.0002 00004 00006 00008 0001 00012 exact crossover point, it remains silent about the system size
(Ny°® dependence of crossover point, which is nevertheless an im-
portant issue.
FIG. 8. System size dependence of the crossover point. Our mixed-mode load sharing model exactly reduces to
the ELS model ag=0 and to the LLS model ag=1. We
In case of the pure ELS modg=0), we have only long- establish numerically that the MMLS model in one dimen-
range interactions and the clusters are randomly distributesion shows a distinct crossover behavior from mean-field to
within the lattice. Asg increases the stress redistribution be-short-range interactions. The strendth,) variation of the
comes more and more localized in the neighborhood of théundle with system size, the avalanche statistics, and the
failed fibers and a few isolated crack can trigger the completéailure dynamicgsusceptibility and relaxation timeuggest
rupture through growth and coalescence mechanism. Theréiat the crossover poirig.) must be in betweeg=0.7 and
fore the pure ELS mode can store the maximum ciatthks-  g=0.8. Cluster size analysis determines the exact crossover
ter) and this capacity should decrease with the increage of point in one dimension for several system sizes and a proper
We can sedFig. 7) that bothmy and m; decrease with in- extrapolation suggests the crossover point to ge
creasingg value and they fall drastically in betwegx0.7  =0.79+0.01 at the limit of infinite system size. Fpr g, the
and g=0.8. This crossover is very robust in the casargf model exhibits critical behaviofsupported by the power
and average cluster sizen,/my), both of which show a laws) for the dominance of the ELS mode. But the fluctua-
sharp peak, which indicates the dominance of the LLS mod&ons suppress any critical behavior af@gsg., where ex-
over the ELS mod¢25]. treme statistic§1] dominates. We should mention that as the
To check how the crossover point changes its positiorultimate strength(o,) of the bundle continuously decreases
with system size, we have done a similar cluster momentvith increasingg value, we cannot exclude the possibility of
analysis for several system sizes. We observe a weak systatiifferent critical behavior fog=0, 0<g<g,, andg>g, in
size dependence of the peak position—i.e., the crossovéiigher dimensions, like in case of D-Ising systems with
point (Fig. 8. With proper extrapolation we determine the disorder{31]. Therefore we expect this crossover behavior in
crossover poinfg,) to be atg=0.79+0.01 for infinite system the MMLS model to be more prominent in higher dimen-
size. sions.
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