
Crossover behavior in a mixed-mode fiber bundle model

Srutarshi Pradhan,1,* Bikas K. Chakrabarti,2,† and Alex Hansen1,‡

1Department of Physics, Norwegian University of Science and Technology, Trondheim 7491, Norway
2Condensed Matter Physics Group, Saha Institute of Nuclear Physics, 1/AF, Bidhan Nagar, Kolkata 700 064, India

sReceived 19 May 2004; published 29 March 2005d

We introduce a mixed-mode load sharing scheme in a fiber bundle model. This model reduces exactly to
equal-load-sharingsELSd and local-load-sharingsLLSd models at the two extreme limits of a single-load-
sharing parameter. We identify two distinct regimes:sad the mean-field regime where the ELS mode dominates
and sbd the short-range regime dominated by the LLS mode. The crossover behavior is explored through a
numerical study of the strength variation, the avalanche statistics, susceptibility and relaxation time variations,
the correlations among the broken fibers, and their cluster analysis. Analyzing the moments of the cluster size
distributions we locate the crossover point of these regimes. We thus conclude that even in one dimension, the
fiber bundle model shows crossover behavior from mean-field to short-range interactions.
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I. INTRODUCTION

The fiber bundle model represents a simple, stochastic
fracture-failure processf1g in materials subjected to external
load. The model consists of three basic ingredients:sad a
discrete set ofN elements located at sites of a lattice,sbd a
probability distribution of the strength threshold of indi-
vidual elementssfibersd, and scd a load-transfer rule which
distributes the terminal load carried by the failed fibers to the
surviving fibers. The model study was initiated by Peircef2g
in the context of testing the strength of cotton yarns. Since
then, this model has been studied and modified by many
groupsf3–25g using analytic as well as numerical methods.
Fiber bundles are of two classes with respect to the time
dependence of the fiber strength threshold: “Static” bundles
contain fibers whose threshold strengths are independent of
time and such bundles are subjected to quasistatic loading;
i.e., the load is increased steadily up to the complete failure
of the bundles. The load or stresss sload per fiberd is an
independent variable here, and the strength of the bundle is
determined by the maximum value of the applied load or
stresssscd that can be supported by the bundle. On the other
hand, “dynamic” bundles consist of fibers having time-
dependent strength and the fibers fail due to fatiguef4–7g
after a period of time which varies fiber to fiber. The time
taken for complete failure is called the lifetime of the bundle.
According to the load sharing rule, fiber bundles are being
classified into two groups: equal-load-sharingsELSd bundles
f8–17g or democratic bundles and local-load-sharingsLLSd
bundles f18–20g. In the ELS models all the intact fibers
equally share the terminal load of a failed fiber, whereas in
LLS model the terminal load gets shared among the intact
nearest neighbors. ELS models show a phase transition from
partial failure to total failure at a critical strengthsscd. The
critical behavior in the failure dynamics of ELS bundles has

been solved analyticallyf15,16g and the universality of the
ELS model has been establishedf17g recently. However, the
strength of LLS models goes to zerof21–23g at the limit of
infinite system size and this does not permit any critical be-
havior in the failure process.

The ELS and LLS models belong to two opposite ex-
tremes with respect to the spatial correlations in stress redis-
tributions. These models do not incorporate any type of
stress gradient among the intact fibers which is an usual ex-
pectation. Therefore a load sharing scheme in between ELS
and LLS should be a realistic approach to study the failure of
heterogeneous materials. Hansen and Hemmerf24g intro-
duced a “l model” to interpolate between ELS and LLS
models wherel is an adjustable stress-transfer factor. Al-
though they conjectured the existence of a critical crossover
value lc which separates the mean-fieldsELSd regime and
the short-rangesLLSd regime, what would be the exact cross-
over point was not answered. A recent approach by Hidalgo
et al. f25g incorporates both the ELS and LLS modes intro-
ducing an effective range of interaction parametersgd which
is actually the power of the stress redistribution function.
They observed crossover behavior in the strength variation
and in the avalanche statistics of the failures. Also they de-
termined the crossover pointsgcd through moment analysis
of the cluster size distributions before total failure.

In this paper we develop a mixed-mode load sharing
sMMLSd model which interpolates the ELS and LLS models
correctly. We intend to study whether this model shows a
continuous transition from mean-fieldsELSd behavior to ex-
treme statisticssLLSd or if there exists a definite crossover
point.

We organize this paper as follows: After this introduction
sSec. Id we present our MMLS model in Sec. II. Section III
contains observations of crossover behavior through a nu-
merical study of the model. The analysis to determine the
exact crossover point is given in Sec. IV. The final section
sSec. Vd is devoted to a discussions including our conclu-
sions.
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II. MODEL

Our mixed-mode load sharing scheme is basically a cou-
pling of ELS and LLS modes: When a fiber fails, a fraction
sgd of its terminal load gets shared among the nearest neigh-
bors of the failed fibersLLS ruled and the rests1−g fractiond
is distributed equally among all the surviving fiberssELS
ruled. Hereg is the weight parameter of the MMLS scheme.
Therefore, the model reduces exactly to the ELS model for
g=0, and forg=1, it becomes a pure LLS one. As we have
chosen as1−Dd-fiber-bundle modelswith periodic boundary
conditiond, the number of nearest neighbors is always 2. We
study the behavior of the model for the entire range 0øg
ø1 using Monte Carlo simulations for stepwise equal-load
incrementsf15–17g until total failure of the bundle. During
the entire study we consider a uniformson averaged distribu-
tion of the fiber strength threshold in the bundle.

III. CROSSOVER BEHAVIOR

A. Strength of the bundle

It has been known since Danielsf3g that the ELS bundles
have a nonzero strengthsscd above which the bundle fails
completely. Recently it has been shown analyticallyf15,16g
that for a uniform fiber threshold distribution, the bundle’s
strength approaches the value 1/4 as the system size goes to
infinity. On the other hand, LLS bundles do not have any
nonzero strengthf21–23g. In our MMLS model we intend to
study the strength variation of bundles with system size as
well as with the weight parameterg.

As g increases, the bundle becomes weaker due to the
short-rangesLLSd interactions. Thereforesc decreases with
increasingg valuessFig. 1d. We can see thatsc seems to be
independent of the system sizesdominance of ELSd up to
g=0.7, and beyondg=0.8, a strong system size dependence
sdominance of LLSd appears. This observation is supported
by Fig. 2, where we have shown the logarithmic size depen-
dence ofsc. Up to g=0.7, the curves eventually become flat
as the system size increases. But forgù0.8, all the curves
fall sfollowing an inclined straight lined. Thus the two re-
gimes are differentiated clearly.

B. Avalanche size distribution

The avalanche size distribution characterizes the fracture
process by reflecting the precursory activities toward com-
plete failure. This can be related to the acoustic emissions
observed in material failuref26–28g. Hemmer and Hansen
showedf8g analytically that for ELS models the avalanche
size distribution follows a universal power law with expo-
nent value −5/2. But for LLS models the numerically esti-
mated apparent exponent value is quite larger 4.5f9g. Later it
was shown analyticallysfor flat threshold distributionsd that
for the LLS model, no universal power-law asymptotics ex-
ists f10g.

Here we have measuredsFig. 3d the avalanche size distri-
butions for differentg values. Clearly, two groups of curves

FIG. 1. The strength of the bundle for different system sizessNd
as a function of the weight parameterg.

FIG. 2. The logarithmic size dependence of bundle’s strength
for different values ofg. The straight lines represent the best fit.

FIG. 3. Avalanche size distribution for different values of the
weight parameterg saveraging over 5000 configurations for system
size N=20 000d. The dotted line represents the mean-field result
having exponent value −5/2. Clearly, the upper group of curves can
be fitted by the mean-field power law whereas the lower group does
not show power law at all.

PRADHAN, CHAKRABARTI, AND HANSEN PHYSICAL REVIEW E71, 036149s2005d

036149-2



appear. The upper groups0øgø0.7d can be fitted with the
mean-field results−5/2d where as the lower groups0.8øg
ø1.0d shows a clear deviation from the power law.

C. Susceptibility and relaxation time variations

Recently, the dynamic response parameters, susceptibility
sxd f13–16,29g, and relaxation timestd f15,16g have been

studied in fiber bundle models. The susceptibility is defined
as the number of fibers fail due to an infinitesimal change of
the external stressssd on the bundle and the relaxation time
is the timesnumber of stress redistributionsd the bundle takes
to come to a stable fixed point at an external stressssd. For
the ELS model, the susceptibility and relaxation time seem
to follow a power law with the applied stress and both of
them divergef13,15–17g at the critical strengthsc: x,ssc

−sd−1/2 and t,ssc−sd−1/2. However, one cannot expect
such scaling behavior in LLS models due to the absence of
“critical” strength. The stepwise equal-load increment
methodf15,16g enables us to measurex and t for different
values ofg sFig. 4d. The power-law behaviorswith mean-
field exponent −1/2d remains unchanged up tog=0.7 and for
gù0.8 the curves do not follow power laws at all. Thus the
susceptibility and relaxation time variations also suggest a
transition from the mean-field to short-range behavior to
happen in betweeng=0.7 andg=0.8.

D. Correlations among the broken fibers

The breakdown sequence reflects the correlations of the
breaking processf24g. While the ELS model simply ignores

FIG. 4. The susceptibilitysxd
and relaxation timestd variations
for different g values. The bundle
contains 10 000 fibers and the data
are averaged over 10 000
configurations.

FIG. 5. The space-time diagram of the breakdown sequence in
the MMLS model. The positions of the fibers are marked on thex
axis, and they axis is a “time” axis where time indicates the number
of stress redistributions starting from initial loading. The white
color represents intact fibers while the black regions stand for the
broken fibers.

FIG. 6. Cluster size distributions of broken fiberssjust before
complete failured for different g values saveraging over 5000
samples forN=20 000d.
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the spatial arrangement of the fibers, the LLS model gives
much importance to it. Therefore, asg increasessLLS mode
dominatesd the breaking process becomes more and more
correlatedsFig. 5d. Here also we can identify two distinct
regimes. We cannot see any spatial correlation among the
broken fiberssexcept near total failured up tog=0.7, whereas
for gù0.8 strong correlationssblack patchd develop long
before total failure.

IV. DETERMINATION OF THE EXACT CROSSOVER
POINT THROUGH CLUSTER MOMENT ANALYSIS

The fracture process can also be characterized by analyz-
ing the clusters of broken fibers just before complete failure

f12,25g. The size distributions of the clustersfnssd vs sg are
shownsFig. 6d for different values ofg. Although the distri-
butions appear as two groups, it is not possible to identify the
exact crossover point from this. Therefore we go for the
moment analysis: thekth moment of the cluster distributions
is definedf25g as

mk =E sknssdds. s1d

Clearly the zeroth momentsm0d gives the total number
clusters and the first moment gives the total number of bro-
ken fibers. We can get the average cluster size dividing the
second momentsm2d by first momentsm1d.

FIG. 7. The moments of the cluster size distributions as a function of the weight parameterg saveraging over 5000 samples forN
=20 000d.
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In case of the pure ELS modesg=0d, we have only long-
range interactions and the clusters are randomly distributed
within the lattice. Asg increases the stress redistribution be-
comes more and more localized in the neighborhood of the
failed fibers and a few isolated crack can trigger the complete
rupture through growth and coalescence mechanism. There-
fore the pure ELS mode can store the maximum cracksclus-
terd and this capacity should decrease with the increase ofg.
We can seesFig. 7d that bothm0 and m1 decrease with in-
creasingg value and they fall drastically in betweeng=0.7
and g=0.8. This crossover is very robust in the case ofm2
and average cluster sizesm2/m1d, both of which show a
sharp peak, which indicates the dominance of the LLS mode
over the ELS modef25g.

To check how the crossover point changes its position
with system size, we have done a similar cluster moment
analysis for several system sizes. We observe a weak system
size dependence of the peak position—i.e., the crossover
point sFig. 8d. With proper extrapolation we determine the
crossover pointsgcd to be atg=0.79±0.01 for infinite system
size.

V. CONCLUSION

The fracture and breakdown of loaded materials is basi-
cally a cooperative phenomenon guided by the load redistri-

bution mechanism. Here a “crack” opens up when an ele-
ment sfiberd fails after external loading. This single-fiber
failure should affect the neighbors much than the distant el-
ementsslike in electric fuse modelsf1gd. Therefore a high
stress concentrationsafter the load redistributiond around a
cracksfailed fiberd is a natural expectation. The ELS models
do not incorporate any spatial correlations and exhibit per-
fect democracysmean fieldd, whereas the LLS models con-
fine themselves within the nearest-neighbor interactions. In
this situation attemptsf24,25g to study the failure behavior in
between ELS and LLS regimes would be most welcome.
Also, a recent experiment on loaded wood fiberf30g de-
mands an intermediate-load-sharing scheme to explain the
observed strength variation. The “l model” f24g becomes a
LLS model atl=1. But it cannot be reduced to a pure ELS
model at l=0, as the neighbors of the just broken fibers
become “immunized” against failure. Although the
“variable-range-of-interaction” modelf25g determines the
exact crossover point, it remains silent about the system size
dependence of crossover point, which is nevertheless an im-
portant issue.

Our mixed-mode load sharing model exactly reduces to
the ELS model atg=0 and to the LLS model atg=1. We
establish numerically that the MMLS model in one dimen-
sion shows a distinct crossover behavior from mean-field to
short-range interactions. The strengthsscd variation of the
bundle with system size, the avalanche statistics, and the
failure dynamicsssusceptibility and relaxation timed suggest
that the crossover pointsgcd must be in betweeng=0.7 and
g=0.8. Cluster size analysis determines the exact crossover
point in one dimension for several system sizes and a proper
extrapolation suggests the crossover point to begc
=0.79±0.01 at the limit of infinite system size. Forg,gc the
model exhibits critical behaviorssupported by the power
lawsd for the dominance of the ELS mode. But the fluctua-
tions suppress any critical behavior afterg=gc, where ex-
treme statisticsf1g dominates. We should mention that as the
ultimate strengthsscd of the bundle continuously decreases
with increasingg value, we cannot exclude the possibility of
different critical behavior forg=0, 0,gøgc, andg.gc in
higher dimensions, like in case of 2−D Ising systems with
disorderf31g. Therefore we expect this crossover behavior in
the MMLS model to be more prominent in higher dimen-
sions.
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